counter code

Label Template 1 Per Sheet 1 Things To Expect When Attending Label Template 1 Per Sheet

Carrell, R. W. & Lomas, D. A. Conformational diseases. Lancet 350, 134–138 (1997).

label template 65 per sheet
 Printer Labels 65 Per A4 Sheet | Equivalent to Avery L7651 ..

Printer Labels 65 Per A4 Sheet | Equivalent to Avery L7651 .. | label template 65 per sheet

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kopito, R. R. & Ron, D. Conformational disease. Nature Corpuscle Biol. 2, E207–E209 (2000).

CAS  PubMed  Article  Google Scholar 

Carrell, R. W. & Lomas, D. A. α1-antitrypsin deficiency: a archetypal for conformational diseases. N. Engl. J. Med. 346, 45–53 (2002).

CAS  PubMed  Article  Google Scholar 

Tran, P. B. & Miller, R. J. Aggregates in neurodegenerative disease: crowds and power? Trends Neurosci. 22, 194–197 (1999).

CAS  PubMed  Article  Google Scholar 

Walker, L. C. & LeVine, H. 3rd. The bookish proteopathies. Neurobiol. Aging 21, 559–561 (2000).

CAS  PubMed  Article  Google Scholar 

Huntington, J. A., Read, R. J. & Carrell, R. W. Anatomy of a serpin–protease circuitous shows inhibition by deformation. Nature 407, 923–926 (2000).The long-sought-after anatomy of the final circuitous of a serpin with its ambition proteinase.

CAS  PubMed  Article  Google Scholar 

Mast, A. E., Enghild, J. J., Pizzo, S. V. & Salvesen, G. Assay of the claret abolishment kinetics and conformational stabilities of native, proteinase-complexed, and acknowledging armpit broken serpins: allegory of α1-proteinase inhibitor, α1-antichymotrypsin, antithrombin III, α2-antiplasmin, angiotensinogen, and ovalbumin. Biochemistry 30, 1723–1730 (1991).

CAS  PubMed  Article  Google Scholar 

Lomas, D. A., Evans, D. L., Finch, J. T. & Carrell, R. W. The apparatus of Z α1-antitrypsin accession in the liver. Nature 357, 605–607 (1992).Shows that the Z alternative of α 1 -antitrypsin accumulates in the alarmist by loop–sheet polymerization.

CAS  PubMed  Article  Google Scholar 

Stein, P. E. & Carrell, R. W. What do abortive serpins acquaint us about diminutive advancement and disease? Nature Struct. Biol. 2, 96–113 (1995).

CAS  PubMed  Article  Google Scholar 

Laurell, C.-B. & Eriksson, S. The electrophoretic α1-globulin arrangement of serum in α1-antitrypsin deficiency. Scand. J. Clin. Lab. Invest. 15, 132–140 (1963).The aboriginal description of claret absence of α 1 -antitrypsin.

CAS  Article  Google Scholar 

Brantly, M., Nukiwa, T. & Crystal, R. G. Diminutive base of α1-antitrypsin deficiency. Am. J. Med. 84 (Suppl. 6A), 13–31 (1988).

PubMed  Article  Google Scholar 

Blanco, I., Fernández, E. & Bustillo, E. F. α1-Antitrypsin PI phenotypes S and Z in Europe: an assay of the appear surveys. Clin. Genet. 60, 31–41 (2001).

CAS  PubMed  Article  Google Scholar 

Sharp, H. L., Bridges, R. A., Krivit, W. & Freier, E. F. Cirrhosis associated with α1-antitrypsin deficiency: a ahead unrecognised affiliated disorder. J. Lab. Clin. Med. 73, 934–939 (1969).

CAS  PubMed  Google Scholar 

Sveger, T. The accustomed history of alarmist ache in α1-antitrypsin amiss children. Acta Paediatr. Scand. 77, 847–851 (1988).

CAS  PubMed  Article  Google Scholar 

Eriksson, S., Carlson, J. & Velez, R. Risk of cirrhosis and primary alarmist blight in α1-antitrypsin deficiency. N. Engl. J. Med. 314, 736–739 (1986).

CAS  PubMed  Article  Google Scholar 

Carrell, R. W. et al. Anatomy and aberration of beastly α1-antitrypsin. Nature 298, 329–334 (1982).

CAS  PubMed  Article  Google Scholar 

Larsson, C. Accustomed history and action assumption in astringent α1-antitrypsin deficiency, PiZ. Acta Med. Scand. 204, 345–351 (1978).

CAS  PubMed  Article  Google Scholar 

Elliott, P. R., Lomas, D. A., Carrell, R. W. & Abrahams, J.-P. Inhibitory anatomy of the acknowledging bend of α1-antitrypsin. Nature Struct. Biol. 3, 676–681 (1996).The clear anatomy of α 1 -antitrypsin showed the acknowledging bend in a anatomy that was ideal for advancing with the ambition proteinase. It additionally provided a archetypal for the anatomy of α 1 -antitrypsin polymers.

CAS  PubMed  Article  Google Scholar 

Lomas, D. A., Evans, D. L., Stone, S. R., Chang, W.-S. W. & Carrell, R. W. Effect of the Z alteration on the concrete and inhibitory backdrop of α1-antitrypsin. Biochemistry 32, 500–508 (1993).

CAS  PubMed  Article  Google Scholar 

Gooptu, B. et al. Abeyant anatomy of the serpin α1-antichymotrypsin indicates two date admittance of the acknowledging loop; implications for inhibitory action and conformational disease. Proc. Natl Acad. Sci. USA 97, 67–72 (2000).

CAS  PubMed  Article  Google Scholar 

Mahadeva, R., Dafforn, T. R., Carrell, R. W. & Lomas, D. A. Six-mer peptide selectively anneals to a pathogenic serpin anatomy and blocks polymerisation: implications for the blockage of Z α1-antitrypsin accompanying cirrhosis. J. Biol. Chem. 277, 6771–6774 (2002).

CAS  PubMed  Article  Google Scholar 

Sivasothy, P., Dafforn, T. R., Gettins, P. G. W. & Lomas, D. A. Pathogenic α1-antitrypsin polymers are formed by acknowledging loop–β-sheet A linkage. J. Biol. Chem. 275, 33663–33668 (2000).

CAS  PubMed  Article  Google Scholar 

Graham, K. S., Le, A. & Sifers, R. N. Accession of the baffling PiZ alternative of beastly α1-antitrypsin aural the hepatic endoplasmic cloth does not drag the steady-state akin of grp78/BiP. J. Biol. Chem. 265, 20463–20468 (1990).

CAS  PubMed  Google Scholar 

Janciauskiene, S., Dominaitiene, R., Sternby, N. H., Piitulainen, E. & Eriksson, S. Detection of circulating and endothelial corpuscle polymers of Z and wildtype α1-antitrypsin by a monoclonal antibody. J. Biol. Chem. 277, 26540–26546 (2002).

CAS  PubMed  Article  Google Scholar 

Dafforn, T. R., Mahadeva, R., Elliott, P. R., Sivasothy, P. & Lomas, D. A. A alive description of the polymerisation of α1-antitrypsin. J. Biol. Chem. 274, 9548–9555 (1999).

CAS  PubMed  Article  Google Scholar 

Skinner, R. et al. Implications for action and analysis of a 2.9Å anatomy of binary-complexed antithrombin. J. Mol. Biol. 283, 9–14 (1998).

CAS  PubMed  Article  Google Scholar 

Le, A., Ferrell, G. A., Dishon, D. S., Quyen-Quyen, A. L. & Sifers, R. N. Soluble aggregates of the beastly PiZ α1-antitrypsin alternative are base aural the endoplasmic cloth by a apparatus acute to inhibitors of protein synthesis. J. Biol. Chem. 267, 1072–1080 (1992).

CAS  PubMed  Google Scholar 

Sidhar, S. K., Lomas, D. A., Carrell, R. W. & Foreman, R. C. Mutations which impede loop/sheet polymerisation enhance the beard of beastly α1-antitrypsin absence variants. J. Biol. Chem. 270, 8393–8396 (1995).

CAS  PubMed  Article  Google Scholar 

Wu, Y. et al. A lag in intracellular abasement of aberrant α1-antitrypsin correlates with alarmist ache phenotype in homozygous PiZZ α1-antitrypsin deficiency. Proc. Natl Acad. Sci. USA 91, 9014–9018 (1994).Individuals with Z -α 1 -antitrypsin-related alarmist ache (as adjoin to those with claret deficiency) accept a lag in aspersing the retained protein, which indicates that the administration of the polymers is acceptable to be important in free which patients advance adolescent cirrhosis.

CAS  PubMed  Article  Google Scholar 

Cabral, C. M., Liu, Y. & Sifers, R. N. Dissecting the glycoprotein affection ascendancy in the secretory pathway. Trends Biochem. Sci. 26, 619–623 (2001).An accomplished analysis that shows the role of glycosylation in free the fate of α 1 -antitrypsin retained in hepatocytes.

CAS  PubMed  Article  Google Scholar 

Bruce, D., Perry, D. J., Borg, J.-Y., Carrell, R. W. & Wardell, M. R. Thromboembolic ache due to thermolabile conformational changes of antithrombin Rouen VI (187 Asn→Asp). J. Clin. Invest. 94, 2265–2274 (1994).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Beauchamp, N. J. et al. Antithrombins wibble and wobble (T85M/K): archetypal conformational diseases with in vivo latent-transition, occlusion and heparin activation. Blood 92, 2696–2706 (1998).

CAS  PubMed  Google Scholar 

Zhou, A., Huntington, J. A. & Carrell, R. W. Accumulation of the antithrombin heterodimer and the access of thrombosis. Blood 94, 3388–3396 (1999).

CAS  PubMed  Google Scholar 

Corral, J. et al. Diminutive assuming of the aboriginal homozygous heparin co-factor II deficiency. Involvement in conformational disease. Occlusion Haemostasis (Suppl.) (2001).

Levashina, E. A. et al. Constitutive activation of toll-mediated antifungal aegis in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Seyama, K. et al. Siiyama (serine 53 (TCC) to phenylalanine 53 (TTC)). A new α1-antitrypsin-deficient alternative with alteration on a predicted conserved balance of the serpin backbone. J. Biol. Chem. 266, 12627–12632 (1991).

CAS  PubMed  Google Scholar 

Roberts, E. A., Cox, D. W., Medline, A. & Wanless, I. R. Occurrence of α1-antitrypsin absence in 155 patients with alcoholic alarmist disease. Am. J. Clin. Pathol. 82, 424–427 (1984).

CAS  PubMed  Article  Google Scholar 

Seyama, K., Nukiwa, T., Souma, S., Shimizu, K. & Kira, S. α1-antitrypsin-deficient alternative Siiyama (Ser53[TCC] to Phe53[TTC]) is accustomed in Japan. Status of α1-antitrysin absence in Japan. Am. Rev. Respir. Dis. 152, 2119–2126 (1995).

CAS  Article  Google Scholar 

Lomas, D. A., Finch, J. T., Seyama, K., Nukiwa, T. & Carrell, R. W. α1-antitrypsin Siiyama (Ser53αPhe); added affirmation for intracellular loop–sheet polymerisation. J. Biol. Chem. 268, 15333–15335 (1993).

CAS  PubMed  Google Scholar 

Lomas, D. A. et al. Alpha1-antitrypsin Mmalton (52Phe deleted) forms loop–sheet polymers in vivo: affirmation for the C area apparatus of polymerisation. J. Biol. Chem. 270, 16864–16870 (1995).

CAS  PubMed  Article  Google Scholar 

Millar, D. S. et al. Three atypical missense mutations in the antithrombin III (AT3) gene causing alternate venous thrombosis. Hum. Genet. 94, 509–512 (1994).

CAS  PubMed  Article  Google Scholar 

Aulak, K. S. et al. A articulation arena alteration in C1-inhibitor (Ala436φThr) after-effects in nonsubstrate-like behavior and in polymerization of the molecule. J. Biol. Chem. 268, 18088–18094 (1993).

CAS  PubMed  Google Scholar 

Eldering, E., Verpy, E., Roem, D., Meo, T. & Tosi, M. COOH-terminal substitutions in the serpin C1 inhibitor that account bend overinsertion and consecutive multimerization. J. Biol. Chem. 270, 2579–2587 (1995).

CAS  PubMed  Article  Google Scholar 

Poller, W. et al. A leucine-to-proline barter causes a abnormal α1-antichymotrypsin allele associated with familial adverse lung disease. Genomics 17, 740–743 (1993).

CAS  PubMed  Article  Google Scholar 

Elliott, P. R., Stein, P. E., Bilton, D., Carrell, R. W. & Lomas, D. A. Structural account for the dysfunction of S α1-antitrypsin. Nature Struct. Biol. 3, 910–911 (1996).

CAS  PubMed  Article  Google Scholar 

Mahadeva, R. et al. Heteropolymerisation of S, I and Z α1-antitrypsin and alarmist cirrhosis. J. Clin. Invest. 103, 999–1006 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Davis, R. L. et al. Familial encephalopathy with neuroserpin admittance bodies (FEN1B). Am. J. Pathol. 155, 1901–1913 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Davis, R. L. et al. Familial dementia acquired by polymerisation of aberrant neuroserpin. Nature 401, 376–379 (1999).Demonstration that polymerization of two mutants of neuroserpin underlie a atypical admittance anatomy dementia. The protein bond is the aforementioned as that which underlies the assimilation of Z α 1 -antitrypsin in hepatocytes to account cirrhosis.

CAS  PubMed  Google Scholar 

Bradshaw, C. B. et al. Cognitive deficits associated with a afresh appear familial neurodegenerative disease. Arch. Neurol. 58, 1429–1434 (2001).

CAS  PubMed  Article  Google Scholar 

Belorgey, D., Crowther, D. C., Mahadeva, R. & Lomas, D. A. Aberrant neuroserpin (S49P) that causes familial encephalopathy with neuroserpin admittance bodies is a poor proteinase inhibitor and readily forms polymers in vitro. J. Biol. Chem. 277, 17367–17373 (2002).

CAS  PubMed  Article  Google Scholar 

Davis, R. L. et al. Association amid conformational mutations in neuroserpin and access and severity of dementia. Lancet 359, 2242–2247 (2002).

CAS  PubMed  Article  Google Scholar 

Abrahamson, M. & Grubb, A. Added anatomy temperature accelerates accession of the Leu–68φGln aberrant cystatin C, the amyloid-forming protein in ancestral cystatin C amyloid angiopathy. Proc. Natl Acad. Sci. USA 91, 1416–1420 (1994).

CAS  PubMed  Article  Google Scholar 

Janowski, R. et al. Beastly cystatin C, an amyloidogenic protein dimerizes through three-dimensional area swapping. Nature Struct. Biol. 8, 316–320 (2001).

CAS  PubMed  Article  Google Scholar 

Staniforth, R. A. et al. Three-dimensional area swapping in the bankrupt and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J. 20, 4774–4781 (2001).

CAS  PubMed  PubMed Central  Article  Google Scholar 

McParland, V. J., Kalverda, A. P., Homans, S. W. & Radford, S. E. Structural backdrop of an amyloid forerunner of β2-microglobulin. Nature Struct. Biol. 9, 326–331 (2002).

CAS  PubMed  Article  Google Scholar 

Booth, D. R. et al. Instability, advance and accession of beastly lysozyme variants basal amyloid fibrillogenesis. Nature 385, 787–793 (1997).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lashuel, H. A., Wurth, C., Woo, L. & Kelly, J. W. The best pathogenic transthyretin variant, L55P, forms amyloid fibrils beneath acerb altitude and protofilaments beneath physiological conditions. Biochemistry 12, 13560–13573 (1999).

Article  CAS  Google Scholar 

Eanes, E. D. & Glenner, G. G. X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16, 673–677 (1968).

CAS  Article  PubMed  Google Scholar 

Blake, C. & Serpell, L. Synchrotron X-ray studies advance that the amount of the transthyretin amyloid cilia is a connected β-sheet helix. Anatomy 4, 989–998 (1996).Interpretation of the diffraction arrangement of amyloid fibrils, with a acceptable archetypal for their structure.

CAS  PubMed  Article  Google Scholar 

Sunde, M. et al. Common amount anatomy of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

CAS  Article  PubMed  Google Scholar 

Pepys, M. B. Pathogenesis, analysis and analysis of systemic amyloidosis. Phil. Trans. R. Soc. Lond. B Biol. Sci. 356, 203–210 (2001).

CAS  Article  Google Scholar 

Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M. & Teplow, D. B. Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22372 (1997).

CAS  PubMed  Article  Google Scholar 

Goldberg, M. S. & Lansbury, P. T. J. Is there a cause-and-effect accord amid α-synuclein fibrillization and Parkinson’s disease? Nature Corpuscle Biol. 2, E115–E119 (2000).

CAS  PubMed  Article  Google Scholar 

Fraser, P. E. et al. Cilia accumulation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer amyloid β-protein. Biochemistry 31, 10716–10723 (1992).

CAS  PubMed  Article  Google Scholar 

Iversen, L. L., Mortishire-Smith, R. J., Pollack, S. J. & Shearman, M. S. The toxicity in vitro of β-amyloid protein. Biochem. J. 311, 1–16 (1995).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Polymeropoulos, M. H. et al. Mutations in the α-synuclein gene articular in families with Parkinson’s disease. Science 276, 2045–2047 (1997).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kruger, R. et al. Ala30Pro alteration in the gene encoding α-synuclein in Parkinson’s disease. Nature Genet. 18, 106–108 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s ache and dementia with lewy bodies. Proc. Natl Acad. Sci. USA 95, 6469–6473 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a aggregate acreage of both α-synuclein mutations affiliated to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576 (2000).

CAS  PubMed  Article  Google Scholar 

Knaus, K. J. et al. Clear anatomy of the beastly prion protein reveals a apparatus of oligomerization. Nature Struct. Biol. 8, 770–774 (2001).

CAS  PubMed  Article  Google Scholar 

Emmerich, J. et al. A phenylalanine 402 to leucine alteration is amenable for a abiding abeyant anatomy of antithrombin. Thromb. Res. 76, 307–315 (1994).

CAS  PubMed  Article  Google Scholar 

Kelly, J. W. Mechanisms of amyloidogenesis. Nature Struct. Biol. 7, 824–826 (2000).

CAS  PubMed  Article  Google Scholar 

Bousset, L., Thomson, N. H., Radford, S. E. & Melki, R. The aggrandize prion Ure2p retains its built-in alpha-helical anatomy aloft accumulation into protein fibrils in vitro. EMBO J. 21, 2903–2911 (2002).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huntington, J. A. et al. A 2.6Å anatomy of a serpin polymer and implications for conformational disease. J. Mol. Biol. 293, 449–455 (1999).

CAS  PubMed  Article  Google Scholar 

Dunstone, M. A. et al. Broken antitrypsin polymers at diminutive resolution. Protein Sci. 9, 417–420 (2000).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Iwata, N. et al. Metabolic adjustment of academician Aβ by neprilysin. Science 292, 1550–1552 (2001).

CAS  Article  PubMed  Google Scholar 

Kitada, T. et al. Mutations in the parkin gene account autosomal backward adolescent parkinsonism. Nature 392, 605–608 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Haass, C., Hung, A. Y., Schlossmacher, M. G., Teplow, D. B. & Selkoe, D. J. β-Amyloid peptide and a 3-kDa fragment are acquired by audible cellular mechanisms. J. Biol. Chem. 268, 3021–3024 (1993).

CAS  PubMed  Google Scholar 

Haass, C. et al. Amyloid β-peptide is produced by able beef during accustomed metabolism. Nature 359, 322–325 (1992).

CAS  PubMed  Article  Google Scholar 

Shoji, M. et al. Production of the Alzheimer amyloid β protein by accustomed proteolytic processing. Science 258, 126–129 (1992).

CAS  PubMed  Article  Google Scholar 

Selkoe, D. J. Alzheimer’s disease: genes, proteins and therapy. Physiol. Rev. 81, 741–766 (2001).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 appropriate for presenilin endoproteolysis and β-secretase activity. Nature 398, 513–517 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Li, Y.-M. et al. Photoactivated α-secretase inhibitors directed to the alive armpit covalently characterization presenilin 1. Nature 405, 689–694 (2000).

CAS  PubMed  Article  PubMed Central  Google Scholar 

Sinha, S. et al. Purification and cloning of amyloid forerunner protein β-secretase from beastly brain. Nature 402, 537–540 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yan, R. et al. Membrane-anchored aspartyl protease with Alzheimer’s ache β-secretase activity. Nature 402, 533–537 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vassar, R. et al. Beta-secretase break of Alzheimer’s amyloid forerunner protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

CAS  Article  PubMed  Google Scholar 

Hussain, I. et al. Identification of a atypical aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci. 14, 419–427 (1999).

CAS  PubMed  Article  Google Scholar 

Muchowski, P. J. et al. Hsp70 and Hsp40 chaperones can arrest self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA 97, 7841–7846 (2002).

Article  Google Scholar 

Perutz, M. F. Glutamine repeats and affiliated neurodegenerative diseases: diminutive aspects. Curr. Opin. Struct. Biol. 6, 848–858 (1996).

CAS  PubMed  Article  Google Scholar 

Perutz, M. F., Finch, J. T., Berriman, J. & Lesk, A. Amyloid fibres are water-filled nanotubes. Proc. Natl Acad. Sci USA 99, 5591–5595 (2002).

CAS  PubMed  Article  Google Scholar 

Soto, C. et al. β-Sheet breaker peptides arrest fibrillogenesis in a rat academician archetypal of amyloidosis: implications for Alzheimer’s therapy. Nature Med. 4, 822–826 (1998).Demonstration that baby peptides can block the β-strand bond of the peptide that is anticipation to account Alzheimer ache and so abate applique accumulation in an beastly model.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Devlin, G. L., Parfrey, H., Tew, D. J., Lomas, D. A. & Bottomley, S. P. Blockage of polymerization of M and Z α1-antitrypsin (α1-AT) with trimethylamine N-oxide. Implications for the analysis of α1-AT deficiency. Am. J. Respir. Corpuscle Mol. Biol. 24, 727–732 (2001).

CAS  PubMed  Article  Google Scholar 

Pepys, M. B. et al. Targeted pharmacological burning of serum amyloid P basic for analysis of beastly amyloidosis. Nature 417, 254–259 (2002).Elegant affirmation of the use of rational biologic architecture to advance a biologic for the analysis of the amyloidoses.

CAS  PubMed  Article  Google Scholar 

Bard, F. et al. Peripherally administered antibodies adjoin amyloid β-peptide access the axial afraid arrangement and abate anatomy in a abrasion archetypal of Alzheimer disease. Nature Med. 6, 916–919 (2000).

CAS  Article  PubMed  Google Scholar 

Burrows, J. A. J., Willis, L. K. & Perlmutter, D. H. Chemical chaperones arbitrate added beard of aberrant α1-antitrypsin (α1-AT) Z: a abeyant pharmacologcial action for blockage of alarmist abrasion and emphysema. Proc. Natl Acad. Sci. USA 97, 1796–1801 (2000).

CAS  PubMed  Article  Google Scholar 

Morgan, D. et al. Aβ peptide anesthetic prevents anamnesis accident in an beastly archetypal of Alzheimer’s disease. Nature 408, 982–985 (2000).

CAS  Article  PubMed  Google Scholar 

Fitton, H. L., Pike, R. N., Carrell, R. W. & Chang, W.-S. W. Mechanisms of antithrombin polymerisation and heparin activation probed by admittance of constructed acknowledging bend peptides. Biol. Chem. 378, 1059–1063 (1997).

CAS  PubMed  Google Scholar 

Chang, W.-S. W., Wardell, M. R., Lomas, D. A. & Carrell, R. W. Probing serpin acknowledging bend conformations by proteolytic cleavage. Biochem. J. 314, 647–653 (1996).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Elliott, P. R., Pei, X. Y., Dafforn, T. R. & Lomas, D. A. Topography of a 2.0Å anatomy of α1-antitrypsin reveals targets for rational biologic architecture to anticipate conformational disease. Protein Sci. 9, 1274–1281 (2000).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rubenstein, R. C. & Zeitlin, P. L. A pilot analytic balloon of articulate sodium 4-phenylbutyrate (Buphenyl) in ΔF508-homozygous cystic fibrosis patients: fractional apology of nasal epithelial CFTR function. Am. J. Respir. Crit. Care Med. 157, 484–490 (1998).

CAS  PubMed  Article  Google Scholar 

Label Template 1 Per Sheet 1 Things To Expect When Attending Label Template 1 Per Sheet – label template 65 per sheet
| Encouraged in order to our weblog, in this particular time I’m going to explain to you in relation to keyword. And now, this is the initial picture: